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Abstract: This study contributes a bathtub-style inundation prediction model with abstractions 

of coastal processes (i.e. storm surge and wave runup) for flood forecasting at medium-range 

(weekly to monthly) timescales along the coastline of large lakes. Uncertainty from multiple data 

sources are propagated through the model to establish probabilistic bounds of inundation, 

providing a conservative measure of risk. The model is developed in a case study of the New 

York Lake Ontario shoreline, which has experienced two record-setting floods over the course of 

three years (2017-2019). Predictions are developed at a parcel-level and are validated using 

inundation accounts from an online survey and flyover imagery taken during the recent flood 

events. Model predictions are compared against a baseline, deterministic model that accounts for 

the same processes but does not propagate forward data uncertainties. Results suggest that a 
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29 probabilistic approach helps capture observed instances of inundation that would otherwise be 
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probabilistic predictions, especially for parcels impacted by wave runup. The goal of the tool is 

to provide community planners and property owners with a conservative, parcel-level assessment 

of flood risk to help inform short-term emergency response and better prepare for future flood 

events. 
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(KEYWORDS: probabilistic predictions; Great Lakes; inundation verification; flood hazard) 

Damage from coastal flooding is growing rapidly around the world (Jongman, et al., 2012; 

Paprotny et al., 2018). Along ocean coasts, flood frequency is projected to more than double in 

certain regions with sea level rise and increased storm activity (Vitousek et al., 2017). Along the 

coastline of large inland lakes, the situation is complicated by fluctuations in climate and 

hydrology that alter water level variability in different ways and 

(Gronewold et al., 

communities have experienced record-setting high water levels 

leading to inundation of near-shore homes and businesses and flash floods during storm surge 

and high wave events (IJC-LOSLR Board, 2018; Gronewold and Rood, 2019). These record-

setting floods highlight the need for information that can help communities reduce coastal flood 

impacts, especially information tailored for the unique hazards present in large lake systems. 

Coastal communities make decisions regarding flood-risk reduction 

short-term 

emergency response actions include alerting residents in low-lying regions (including seasonal 

residents), moving belongings to higher elevation, sealing low-elevation storm drains to avoid 

securing 

infrastructure to reduce flood damages. These activities often require days or even weeks to 

implement. Long-term risk management actions include investing in shoreline protection and 

INTRODUCTION 

over multiple timescales 

2013; Woolway et al., 2020). In the Laurentian Great Lakes, coastal 

over the last several years, 

on various time scales, 

including emergency response and long-term risk management. Short-term 

backflow, pumps to remove ponded water, and sandbagging homes and key 

stabilization structures (e.g. vertical walls, revetments), elevating structures, retrofitting 

mechanical systems to operate under submerged conditions, installing sewer systems to avoid 

septic system failure, and retrofitting existing storm sewer outlets with control valves to avoid 

This article is protected by copyright. All rights reserved 
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backflow. The necessary information and tools needed to make informed flood-risk decisions 

vary depending on the relevant time scales. In this study, we focus on developing a probabilistic 

inundation model that is designed to support medium-range (i.e. weekly to monthly) flood 

forecasting and short-term emergency response along lake coastlines but can also be adapted for 
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tscreening-level assessments of long-term flood risk. This model is developed in a case study of 

the New York coastline of Lake Ontario, the 13th largest inland lake in the world and the last of 

the five Laurentian Great Lakes. 

There are several commonly employed techniques to model inundation that range in complexity, 

from simplified conceptual models to 2-D and 3-D hydrodynamic models (Teng et al., 2017). 

Deterministic, single-value water surface models (or “bathtub” models) predict inundation by 

comparing land elevation and static water level (NOAA-CSC, 2010). Because of their simplicity, 

bathtub models forego coastal process calculations such 

However, on large lakes, wind fields can propagate significant wave runup and storm surge 

during periods of increased storm activity, and flood events can be induced by high static water 

levels, storm activity, or a combination of the two (Kreutzwiser et al., 1992; Angel, 1995). 

Therefore, bathtub models often miss important factors that contribute to inundation. 

Higher dimensional hydrodynamic models can accurately capture coastal processes at a fine 

temporal and spatial resolution using the governing laws of hydraulics and fluid motion (Bates et 

al., 2010; Favaretto et al., 2019). Given the importance of storm-related activities in inundation 

prediction (Spaulding et al., 2017), a fine resolution hydrodynamic model is being used as the 

basis to update FEMA flood insurance rate maps for the entire Great Lakes shoreline (FEMA, 

2014). While hydrodynamic models can capture accurately the coastal processes that contribute 

to inundation, they require granular meteorological inputs that 

forecasting inundation at medium-range lead times (e.g., winds fields are typically forecasted out 

few days; Chu 

hydrodynamic models in month-ahead flood risk estimates. However, we argue that these models 

as storm surge and wave runup. 

are often unavailable when 

only a et al., 2011). This complicates the direct use of predictions from 

still provide valuable information for medium-range forecasting. In this work, we forward an 

approach that develops statistical summaries of storm surge and wave runup from hindcasts of 

This article is protected by copyright. All rights reserved 
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hydrodynamic model output, and then adds those components into bathtub models to provide a 

better characterization of flood risk at extended lead times. 

Beyond accounting for multiple inundation processes, components of model error should be 
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t quantified and propagated to provide estimates of uncertainty around inundation predictions. It is 

important to account for data and model uncertainties to prevent decision-makers from relying 

on “precise, but potentially inaccurate” (Alfonso et al., 2016) data. This is particularly true 

extreme high-water events, when relatively small uncertainties in 

elevation data can result in significantly different flooding impacts. This is demonstrated in 

Figure 1, which shows the range of properties along the shoreline of Lake Ontario that are 

inundated when water level and elevation uncertainties are considered and water levels are high 

(as during recent floods in 2017 and 2019). 

uncertainties 

uncertainty in the vertical accuracy of elevation data, which is often derived from Light 

Detection and Ranging (LiDAR) data or digital elevation models (DEMs). Elevation data that 

overestimate the true land elevation would result in an underestimation of flood risk (Van de 

al., 2012). Similarly, inaccuracies in water levels from gage measurement error, 

interpolation to ungaged sites, datum conversion, or forecasts of hydrologic inputs can impact 

the accuracy of inundation predictions. Propagation and interactions in meteorologically induced 

surges, coastal seiches, and wave set-up, set-down, and runup further increase the uncertainty in 

total water levels that can induce coastal flooding (Mazas et al., 2014). Probabilistic approaches 

for predicting inundation seek to account for these uncertainties by reporting the likelihood of 

inundation, rather than a deterministic, binary estimate of inundation occurrence (Leon et al., 

2014). These approaches have grown in popularity over the past decade (Gesch, 2009; NOAA-

CSC, 2010; Gesch, 2013; Schmid et al., 2014; Kane et al., 2015; Alfonso et al., 2016; Gesch, 

2018; Kovanen et al., 2018; West et al., 2018), in part because they relay the reliability of 

predictions 

during water levels and 

Several confound inundation predictions. For instance, there is underlying 

Sande et 

inundation and better communicate flood risk to shoreline communities (Di 

Baldassarre et al., 2010; Moser, 2014). For instance, the National Oceanic and Atmospheric 

Administration (NOAA) developed the Lake Level Viewer (coast.noaa.gov/llv) for each of the 

Great Lakes to incorporate uncertainty into bathtub-style predictions via the z-score method 

This article is protected by copyright. All rights reserved 
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(Schmid et al., 2014), albeit with limited resolution that could hinder its use for flood risk 

management at the local level (Komolafe et al., 2018). 

In addition to uncertainty propagation, model validation is another critical step needed to ensure 
A

u
th

o
r 

M
a

n
u

s
c
ri
p

t that decision-makers understand the accuracy of predicted flood risk information. Inundation 

models are often validated using observed water levels and streamflow (for riverine flooding) 

rather than accounts of property inundation due to data availability (Horritt, 2006). However, 

many recent studies have relied 

flooding to use in the validation process (Horritt, 2006; Kutija et al., 2014; Blumberg et al., 

2015; Yu et al., 2016; Loftis et al., 2017; Assumpção et al., 2018; Loftis et al., 2019), although 

methodology is 

knowledge, model validation has only been used to test deterministic inundation predictions; the 

verification of probabilistic inundation predictions using observed 

underexplored. 

In order for inundation predictions to be utilized in coastal decision-making, such as emergency 

response actions, they must capture the underlying inundation-driving mechanisms while also 

quantifying uncertainty and stakeholder confidence in the predictions. Currently, medium-range 

inundation prediction techniques in lacustrine coastal regions do not take into account all of these 

To address 

inundation prediction and mapping tool that is used 

questions: 1) How accurate are inundation predictions based on a deterministic bathtub model 

with abstractions of coastal processes (i.e., storm surge and wave runup) in large lake systems? 

2) Under what conditions can predictions be improved by incorporating uncertainty? and 3) How 

does this accuracy vary depending on the mechanisms driving the inundation event? 

The proposed model is adapted from an existing model (The Flood Tool) previously used for 

inundation predictions along the Great Lakes shoreline (Baird, 2005). The model estimates 

on crowdsourcing and citizen science to gather reports of 

this still not common practice (See, 2019). In addition, to the authors’ 

accounts of flooding is 

factors. this gap, this study forwards a novel, probabilistic, and parcel-level 

to address three underlying research 

parcel-level inundation based on deterministic bathtub-style modeling with added modules to 

abstract storm surge and wave runup processes. This work provides three primary contributions 

over the original Flood Tool and to the broader literature. First, we provide an updated version of 
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the model that can develop conservative probabilistic inundation predictions under retrospective 

and forecasted water level conditions while accounting for storm surge and wave runup 

processes. Second, we verify inundation predictions using flyover imagery and citizen-science 

reports of inundation via an online survey during recent flood events. As part of this work, we 
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t explore the spatial heterogeneity of prediction accuracy and its relation to the mechanisms that 

drive inundation along different areas of the shoreline. Finally, we demonstrate the use of the 

model for medium-range, probabilistic inundation forecasts along the New York Lake Ontario 

shoreline that can be updated with operational, multi-week forecasts of static water levels issued 

at sub-weekly timescales. The study concludes with a discussion of limitations of the proposed 

model, future research needs, and the potential of the model to be adapted for use in long-term 

planning efforts for lake level management. 

The proposed model requires four components to probabilistically predict inundation at the 

parcel level: structure elevation, static water level, storm surge, and wave runup (Figure 2). 

Inundation predictions are based on a bathtub-style modeling framework, where the elevation of 

a structure on a parcel is compared against the total water level (i.e., the sum of static levels, 

storm surge, and wave runup) to estimate inundation. However, instead of a binary prediction of 

inundation, the model estimates the probability of inundation following the NOAA (or z-score) 

method (Schmid et al., 2014). 

In this method, uncertainty is quantified for data associated with each component, which when 

taken together quantifies the cumulative uncertainty in the inundation calculation. This technique 

assumes that all data sources are unbiased, that the error in each data source is independent of 

errors for other data sources, and that the cumulative uncertainty can be approximated by a 

normal distribution. If these assumptions hold, then the cumulative uncertainty can be calculated 

by taking the root of the sum of the squares of the individual root mean square errors (RMSEs) 

for each data source. The cumulative RMSE is then used to calculate the z-score at a given 

DATA AND METHODS 

structure using Equation 1. 

This article is protected by copyright. All rights reserved 
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The  z-score  translates  into a  probability of inundation based on the  cumulative  distribution of a  

standard normal  distribution evaluated at  the  z-score. Although some  studies  have  shown not  all  

errors  are  normally distributed, the  assumption of normality of the  NOAA  method tends  to more  

conservatively predict  inundation (Gesch, 2009;  Schmid et  al., 2014). While  over-predictions  of 

flood risk might  result  in unnecessarily high flood protection costs, a  conservative  quantification 

of flood risk supports  the  risk-adverse  nature  of water managers  and flood  risk planners  

(O’Connor et al., 2005). 

In the  proposed 
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model, the  NOAA  method and its  components  can  be  used to predict  inundation 

for past  events  (verification mode) or future  events  (forecast  mode). Some  of the  individual  

elements  in Equation 1 will  vary depending on the  application (or mode) of inundation 

prediction. These  elements, their  data  sources, and their associated uncertainties  are  described in 

more detail below. Geographic coverage for each data source is shown in Figure 3. 

Structure Elevation 

Structure  elevation is  defined as  the  elevation of the  lakeward side  of the  structure  of interest. 

For a  conservative  inundation prediction, the  minimum  elevation of the  lakeward side  of the  

structure  is  included in the  z-score  calculation. Elevation information is  available  in the  form  of 

digital  elevation models  (DEMs). There  are  seven New  York counties  with shorelines  on Lake  

Ontario (Niagara, Orleans, Monroe, Wayne, Cayuga,  Oswego, and Jefferson). All  Lake  Ontario 

shoreline  counties, excluding Monroe  County and Niagara  County, are  covered by a  publicly 

available  FEMA  1-meter DEM  (FEMA, 2014. NYS  Elevation Data. Accessed July 2018, 

https://gis.ny.gov/elevation). Monroe  County is  covered by a  1-foot  DEM  (Monroe  County 

Department  of Environmental  Services, 2017. GIS  Data. Accessed March 2019, 

https://www2.monroecounty.gov/gis-Data.php). Niagara  County is  covered by a  publicly  

This article is protected by copyright. All rights reserved 
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available 3-meter DEM (NOAA Office for Coastal Management, 2014. Coastal Digital Elevation 

Model: Lake Ontario. Accessed March 2019, https://inport.nmfs.noaa.gov/inport/item/48114). 

Elevations were extracted for shoreline homes using tax parcel shapefiles in GIS software. Tax 
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t parcel information is publicly available for Niagara, Orleans, Wayne, Cayuga, and Jefferson 

counties. Tax parcel information for Monroe and Oswego counties were obtained from their 

respective GIS departments. The tax parcel shapefiles were used to identify the footprint of the 

of interest 

USBuildingFootprints. 

https://github.com/microsoft/USBuildingFootprints), which was then used to extract the base 

elevation of the foundation of the structure from the compiled elevation dataset.

 The uncertainty in the DEM elevations is assumed to be equal to the vertical error determined 

for the associated LiDAR data used to develop that DEM. These values are reported as a RMSE 

for each DEM dataset (Table 1). 

Static Water Level 

Static water level is defined as the still water level without any influence of storm related 

activities such as wave runup or storm surge. These data are input into the tool as either a lake-

wide average of gage observations for 

forecasted static water level for a future date (forecast mode). 

Verification 

averaged to ensure there are no surge or seiche impacts when estimating the static water level. 

The six gages used in the calculation are located in both the United States and Canada (NOAA 

Great Lakes Environmental Research Laboratory, 2019. Great Lakes Water Levels Monitoring 

Network. Accessed August 2019, https://www.glerl.noaa.gov/data/wlevels/#monitoringNetwork) 

and include two long-term gages managed by NOAA at Rochester and Oswego, NY, as well as 

structure from the Microsoft Footprint Database (Microsoft, 2019. 

Accessed August 2019 - October 2019, 

a particular historic date (verification mode) or a 

Mode. In verification mode, gage observations on Lake Ontario are 

four long-term gages at Kingston, Cobourg, Toronto, and Port Weller, located in the Province of 

Ontario and managed by Fisheries and Oceans Canada. The static water level for a given date is 
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calculated as the 5-day rolling average water level between the six gages in the monitoring 

network. 

The uncertainty associated with static water levels in verification mode is the combination of 
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t gage measurement error (RMSE of 0.006 m (EPA, 2016)) and the error introduced by converting 

between datums. As static water level is calculated by averaging across six gages, the RMSE for 

the lake-wide average static level is approximately 0.002 m via the Central Limit Theorem. Error 

is introduced in datum conversion because all DEM-based elevations are reported with respect to 

the North American Vertical Datum of 1988 (NAVD88), while all water levels are reported with 

respect to the International Great Lakes Datum of 1985 (IGLD85). NOAA has calculated and 

reported the potential error associated with converting between these two datums (RMSE of 0.20 

(NOAA, 

https://vdatum.noaa.gov/docs/est_uncertainties.html#estTransform)). 

Forecast Mode. Weekly water level forecasts are produced by the US Army Corps of 

– Detroit District (USACE) and Environment and Climate Change Canada (ECCC) 

and released every Friday (lre.usace.army.mil/Missions/Great-Lakes-Information/Great-Lakes-

Water-Levels/Water-Level-Forecast/Weekly-Great-Lakes-Water-Levels). 

system employs an ensemble of input hydroclimatic (e.g. precipitation, temperature, evaporation, 

runoff) forecasts at 1-4 week lead times and estimated inflows from the upper Great Lakes to 

Lake Ontario and from the Ottawa River to the St. Lawrence River. This ensemble of inputs is 

used to produce an ensemble of projected water levels on Lake Ontario. 

In forecast mode, the ensemble mean is used as the static water level when predicting inundation. 

Uncertainty in the forecasted static level is quantified as the combination of datum conversion 

uncertainty and the 95% confidence interval of the ensemble, which is assumed to be +/- 2 

standard deviations of 

confidence interval, we infer the standard deviation of the forecast and use it in the cumulative 

m 2016. VDatum. Accessed January 2019, 

Engineers 

The forecasting 

a normal distribution centered around the mean forecast. From this 

uncertainty term in Equation 1. The standard deviation will vary for each forecast issue, but at a 

4-week lead time it is generally on the order of 0.10 m. 

This article is protected by copyright. All rights reserved 
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 Storm Surge 

Storm surge is defined as the increase in water level over the static mean level due to high wind 

activity or seiche events. In this study, hourly storm surge is taken from the Lake Ontario 

Operational Forecast System (LOOFS) that is managed by NOAA’s National Ocean Service 
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tThe LOOFS 

observations and weather prediction guidance to produce three dimensional predictions of water 

temperature and two-dimensional forecasts of water levels for Lake Ontario (Chu et al., 2011). 

The LOOFS also predicts deviations from the average lake level, i.e. seiche and storm surge 

events. The LOOFS provides two sources of data, short-term (1-48 hour) forecasts and nowcasts, 

the latter which is based on near real-time observations and provides a continuous estimate of 

present conditions across the lake. For any location along the shoreline, we utilize the nowcast 

data for hourly water level deviations from the lake level average (i.e., storm surge) at the grid 

cell nearest the location of interest. These gridded data are available along the entire coastline at 

a 5 km resolution from 2006 to present. 

Verification 

inundation events, we use the maximum LOOFS nowcast storm surge associated with the date of 

inundation. 

comparing nowcast surge values to surge values at hourly observations at gages across the 

shoreline, including those listed in Section 2.2.1 but also including additional gages managed by 

NOAA and the USGS. The observed hourly surge values were calculated by taking hourly 

observed water levels for each gage and subtracting from them 

estimate the water level deviation (i.e., surge) for each hour. The RMSE between the nowcast 

and observed surge was calculated for each gage for data between May 24, 2017 and July 19, 

2019 (when all gages had available data), and then the RMSE values were averaged across gages 

to estimate an average RMSE for nowcast surge estimates that could be applied anywhere along 

the shoreline (RMSE of 0.026 m). 

(NOS). is based on a gridded hydrodynamic model that uses atmospheric 

Mode. When comparing model predictions of inundation to observed 

observed Because these are modeled data, we estimated their uncertainty by 

a 3-day rolling average to 

We also considered an alternative method to calculate storm surge at an arbitrary location along 

the shoreline based on the interpolation of hourly gaged observations to ungaged sites using an 

inverse distance weighting approach. This approach was compared against the LOOFS storm 
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surge  values  under cross-validation. A  determination was  made  to use  the  LOOFS  surge  data  

because  it  performed similarly to the  interpolation approach and provided a  longer dataset  on 

which to base  probabilistic  estimates  of surge. More  detail  is  provided  on this  comparison in the  

Supplement

Forec
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tal Material (Section S1, Figure S1). 

ast Mode. When developing medium-range  (weekly to monthly) forecasts  of storm  

surge, there  are  not  reliable  weather forecasts  of wind speed and direction at  long lead times  on 

which to base  a  forecasted surge  event. Therefore, the  user is  provided  with the  option to select  a  

scenario of wind speed and direction,  and the  tool  then estimates  the  potential  storm  surge  (with 

uncertainty) conditional  on those  wind parameters  and the  LOOFS  nowcast  data.  This  is  

accomplished for any grid cell along the shoreline using the following procedure: 

1. Hourly wind speeds  from  the  LOOFS  nowcast  data  are  categorized into bins  ranging from  0 

miles per hour (mph) to 100 mph by increments of 10 mph for a total of 10 wind speed bins. 

2. Hourly wind directions  are  classified as  the  cardinal  and intercardinal  directions  for a  total  

of 8 wind direction bins. 

3. Each  combination of wind speed and wind direction is  classified as  a  wind event  (80 total  

wind events). 

4. Each  wind event  is  associated with some  number n  of hourly occurrences  in the  nowcast  

dataset, and each of those  n  occurrences  has  its  own nowcast  surge  value  at  the  grid cell  of 

interest. This  produces  an empirical  distribution of surge  values  for a  given wind event  and 

location. In addition, there  is  additional  uncertainty in each individual  nowcast  surge  value  

(as  quantified in 2.3.1). We  employ a  mixture  distribution (Figure  4) to compound the  error 

in the  modelled nowcast  surge  data  with the  uncertainty of potential  surge  values  for any 

given wind event: 

�(�|�) =  ∫�(�|�) �(�|�)  ��       ( 3 ) 

Here, �(�|�)  is  the  distribution of the  true  surge  value  for  a  given wind event, �(�|�)  is  the  

distribution of modelled nowcast  surge  values  for a  given  wind event, and �(�|�)  is  the  

distribution of the  true  surge  value  around  a  particular nowcast  surge  value. We  assume  � 

(�|�)  can be  approximated as  a  mixture  of normal  distributions, i.e., we  assume  normality 
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338 in the  nowcast  surge  values  under any given wind event  and  in the  errors  of the  nowcast  

surge values. 

5. The  mixture  distribution allows  us  to determine  the  expected value  of a  surge  event  for any 

given wind event, as  well  as  an estimate  of its  standard deviation. Here, the  standard 

deviation quantifies  uncertainty in both nowcast  estimates  of surge  as  well  as  the  spread in 

surge  events  for a  selected wind field. The  expected surge  value  is  input  into the  numerator  

of Equation 1 and the  standard deviation is  incorporated into the  cumulative  uncertainty in 

the denominator. 

Wave Runup 

Wave  runup is  defined as  the  water level  increase  resulting from  near-shore  wave  breaking that  

propagates  water up the  shoreline. The  method to calculate  wave  runup is  adapted from  the  

original  
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formulation presented in the  Flood Tool  (Baird,  2005), which  is  based  on the  Mase  

method  and is  outlined by FEMA  in the  Guidelines  and Specifications  for Flood Hazard  

Mapping Partners (FEMA, 2009): 

� = ����(ℎ0 ) = 1.1 × �0.7 × ℎ0 ( 4 ) 

Here, R is  the  wave  height  that  exceeds  the  low  bluff or vertical  wall  height, �  is  the  surf 

similarity parameter, and ℎ0  is  the  offshore  wave  height. The  surf similarity parameter is  defined 

as:  

���  � � =  ℎ ( 5 ) 
0 �0 

where  tan �  is  the  nearshore  slope  of the  property and  �0  is  the  peak wave  period. The  vertical  

water depth added by wave  runup on top  of static  water level  and storm  surge  at  a  particular 

parcel is calculated using the shoreline profile slope and the vertical height, R. 

The  Mase  equation in Eq. 4 is  written as  a  function of ℎ0  to emphasize  its  dependence  on 

offshore  wave  heights, which are  assumed to be  the  primary source  of uncertainty in this  work. 
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Simulated offshore wave height and wave period data were collected from the US Army Corps 

of Engineers Wave Information Studies (WIS) dataset (United States Army Corps of Engineers 

(USACE), 2010. Wave Information Studies. Accessed February 2019, 

http://wis.usace.army.mil). The WIS uses discrete spectral wave models and input wind fields to 
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t provide estimates of wave height, period, and direction for gridded locations across the Lake 

Ontario shoreline (see Figure 3). These data, available from January 1, 1979 to December 31, 

2014, were validated against a limited set of hourly observed wave heights measured at a buoy 

near Oswego, NY and were determined to be relatively unbiased, at least for that location (see 

Supplemental Material; Section S2, Figures S2-S3). 

For inundation predictions in either verification or forecast mode, the average monthly wave 

height for the given date and WIS location nearest the parcel of interest is used as input into the 

runup calculation via the delta method: 

is the variance of the vertical height and 

equation with respect to 

Shoreline profile information 

(FEPS) database (Baird, 2005) available for a large portion of the New York shoreline on Lake 

Ontario. This database includes parcel-level information for vertical wall/bluff height, distance 

from the structure to 

elevation data. 

runup calculation. The uncertainty of the monthly wave 

variance of WIS wave heights for that month and location, �2ℎ0 

height (as quantified by the wave 

) is propagated into the wave 

�2� = Mase (ℎ0) 
2�2  ( 6 )ℎ0 

�2� Mase (ℎ0)Here, is the derivative of the Mase ℎ0. 

was retrieved from the Flood and Erosion Prediction System 

the vertical wall/bluff, and nearshore and backshore slope based on 

APPLICATION 

Model Verification 

Verification Data. Four datasets were used in model verification. The first was an online 

survey developed by Cornell University and New York Sea Grant (NYSG) and distributed to 
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shoreline communities during the 2017 flood event that requested written and visual accounts of 

inundation (Steinschneider et al., 2019). Responses were collected from approximately 500 

participants. Survey responses were pre-screened to ensure that inundation occurred due to Lake 

Ontario water levels, rather than a connected waterway. Redundancy was purposefully included 
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t for key survey questions to ensure respondents fully understood the question and, to the best 

of their ability, answered it accurately. The survey included several questions about foundation 

inundation, which are used here as the basis to evaluate the inundation model. Some respondents 

provided the approximate date that foundation inundation began. In other cases, this field was 

left blank and the inundation event was associated with the date the survey was submitted. For 

each report of inundation, the maximum hourly water level at the associated tax parcel in the 

four weeks prior to and including the date of inundation was collected and used in the inundation 

prediction. We use this hourly water level, rather than the water level on the specific date of 

inundation, because there 

reporting and some degree of uncertainty around the true date that foundation inundation began. 

Imagery from three flyovers was collected and used as another source of observational data. One 

flyover was conducted on June 12, 2017 and was organized by the Eastern Lake Ontario Dune 

Coalition (hereafter abbreviated DUNE). This flyover included coverage of the entire southern 

shoreline of Lake Ontario. Another unmanned flyover on July 12, 2017 was conducted by the 

USGS. This flyover focused primarily along the coast of Wayne County, NY near the village of 

Sodus Point. The third flyover was completed June 15, 2019 by the non-profit group Save Our 

Sodus Inc. (SOS) with coverage of the entire New York shoreline. These images were provided 

to the research team through personal communication and can be made available upon request to 

All of the flyover images were used to visually identify cases of foundation inundation along the 

shoreline. For each flyover product, images were scanned to identify properties with primary 

structures that could clearly be identified as having their foundation inundated or not inundated. 

was often a lag between the inundation occurrence and survey 

SOS. 

These properties were assigned binary indicators (0,1) to record the inundation state of the 

structure foundation. A total of 63, 13, and 77 observations were collected from the DUNE, 

USGS, and SOS flyovers, respectively. Sample images with positive instances of foundation 
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inundation from  each of these  flyovers  can be  found in the  Supplemental  Material  (Section S3). 

Using Google  Earth, the  addresses  of these properties   were identifie d, and then they were  aligned 

with the  corresponding tax parcel  data  and building footprint  using GIS  software. The  minimum  

elevation 
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t of the  foundation of the  home  was  then collected as  well  as  the  latitude  and longitude. 

The  date  of inundation of the  structure  was  input  as  the  date  of the  flyover. For each image  of 

inundation, the  maximum  hourly water level  at  the  associated tax parcel  on the  date  of 

inundation was collected and used in the inundation prediction. 

Due  to  data  availability, 458 of the  687 verification accounts  (across  both the  survey and flyover 

images) were  able to be fully validated and included in the results. 

Verification  Procedure. Model  predictions  of inundation were  developed for all  parcels  

where  observations  of inundation were  available  (i.e., parcels  from  the  Cornell-NYSG  survey, 

DUNE  flyover, USGS  flyover, and SOS  flyover). It  is  highly unlikely that  the  flyover  images  

capture  waves  in the  still  imagery;  therefore, the  wave  runup calculation was  not  included in 

inundation predictions  for these  accounts. The  wave  runup calculation is  included in predictions  

made for the survey accounts of inundation. 

The  tool  produced probabilistic  predictions  of inundation for each property on the  given date  of 

inundation. These  probabilistic  predictions  were  also converted into deterministic  predictions  

based on the  sign of the  numerator in Eq.  1 (e.g., a  positive  (negative) numerator in Eq. 1 was  

associated with a positive (negative) deterministic prediction of inundation). 

We  used these  deterministic  and  probabilistic  predictions  to answer the  first  two research 

questions  of this  work:  1) How  accurate  are  inundation predictions  based on a  deterministic  

bathtub  model?  and 2) Under what  conditions  can predictions  be  improved by incorporating  

uncertainty?  The  deterministic  and probabilistic  predictions  were  compared with the  observed 

cases of inundation using a Brier Score (BS):  

��� 1
 =  ∑  

(  � �� ��)2  ( 7 )� = 1 
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Here, pi is a value between zero and one that reflects the predicted probability of inundation for 

the ith parcel (e.g., pi = 0.57 implies a predicted probability of inundation of 57%). We note that a 

deterministic prediction of inundation and no inundation is equivalent to a probabilistic 

prediction of 100% and 0% chance of inundation, respectively. The binary indicator oi reflects 
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tthe observed state of inundation for the ith parcel (0 implies no inundation, 1 implies inundation). 

A BS of zero is ideal as it means that the predictions and the observed data are the same, whereas 

a BS closer to one indicates that the model is often either underpredicting or overpredicting cases 

of inundation. 

The BS for the probabilistic and deterministic predictions were compared using a Brier Skill 

Score (BSS): 

������ ��� = 1 ����� 

The BSS quantifies the degree 

predictions of inundation. A 

predictions perform equally well, whereas 

probabilistic predictions are outperforming or underperforming the deterministic predictions, 

respectively. We note that if there is a large difference between structure elevation and total 

water levels for most parcels, the deterministic predictions will very often be correct and the 

deterministic BS score will likely be lower than the score for the probabilistic predictions (i.e., 

BSS will be negative). However, if in many cases the total water level and structure elevation are 

sufficiently close so that data uncertainty will significantly impact the inundation prediction, it is 

likely that the BSS will be positive and probabilistic predictions are needed to accurately assess 

The BSS was calculated separately for each of the different observational datasets, as well as for 

observations associated with different shoreline types (i.e. open coastline or embayment). In 

( 8 ) 

to which probabilistic predictions outperform deterministic 

score of zero suggests that the probabilistic and deterministic 

a score above or below zero indicates that the 

and communicate inundation risk. 

addition, spatial patterns in the error between probabilistic predictions and observed inundation 

were analyzed to better determine regions along the shoreline where the model was more or less 

accurate. This analysis provided insight into which inundation-driving mechanisms were 
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accurately being captured by the tool. Wave runup calculations solely impact open coastline 

properties, whereas static water level and storm surge calculations impact both open coastline 

and embayment properties. Therefore, geographic clustering of accurate or inaccurate model 

predictions in particular locations is important in diagnosing model performance. 
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Demonstration of Medium-Range Inundation Forecasts 

To demonstrate inundation predictions under a medium-range water level forecast, we use the 

May 16, 2019 issue date for a June 14, 2019 forecast date. This water level forecast was chosen 

since it nearly overlaps with the SOS flyover, conducted on June 15, 2019. This allows us to 

compare known cases 

available 

(https://kts48.users.earthengine.app/view/lake-ontario-flood-mapper). 

There are two options for displaying inundation predictions based on forecasted water levels: a 

continuous map based on DEM grid cells or a parcel-specific inundation map based on structure 

polygons. Shoreline information required for 

parcels in the FEPS database, not at the DEM grid cell resolution, and therefore wave runup is 

not included in continuous forecast maps at the DEM grid cell level. For each water level 

forecast, inundation predictions are made using the follow steps (shown here for DEM-based 

inundation maps): 

The tool automatically retrieves the point forecast and uncertainty range (i.e. RMSE) of 

the USACE/ECCC issued static water level forecast at a month lead time. 

The user selects a wind speed and wind direction (i.e. a wind event). 

For the entire shoreline, that wind speed and direction is used to develop a storm surge 

distribution (via Eq. 3), providing a mean value and an RMSE. 

These terms are included in Eqs. 1-2 to estimate the probability of inundation for every 

DEM grid cell. 

of inundation with month-ahead inundation predictions. The tool is 

publicly online as a Google Earth Engine web application 

wave runup calculations is only available for 

1. 

2. 

3. 

4. 

A similar procedure is followed for parcel-specific inundation maps, but with an added step to 

include wave runup based on offshore wave heights for the month of interest. 
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RESULTS 

Verification of Inundation Predictions 

The reference model performance is based on deterministic inundation predictions, shown in 
A

u
th

o
r 

M
a

n
u

s
c
ri
p

t Table 2. When all of the datasets 

accurately predicts 

observations, respectively. However, the deterministic model underpredicts and overpredicts 

inundation for 21% and 13% verification accounts, respectively. If a conservative approach to 

modeling 

(approximately one in five) is concerning. 

Model performance 

to the survey 

underpredictions (Table 2b). It is worthwhile to reiterate that the survey is likely the only 

observational set that captures inundation events caused by wave processes in addition to static 

levels and storm surge. When compared to the USGS flyover, the model also has a similarly high 

rate of underpredictions, albeit based on a much smaller sample size (Table 2e). The model 

rarely underpredicts observations based on the SOS flyover, but overpredictions are common 

(the model predicts inundation when none is observed in 29% of all observations; Table 2d). No 

such overpredictions are reported for the DUNE flyover, and the rate of underpredictions is also 

relatively low (13%; Table 2c). 

The probabilistic model provides 

inundation predictions. Table 3 displays probabilistic inundation predictions (split into 10% 

increments) along 

verification products. Table 3 shows that the majority of observations that did not experience 

inundation were predicted to have a very low probability of being inundated (0-10% chance). 

The 98 observations that did experience inundation but were underpredicted by the deterministic 

are pooled together (Table 2a), the deterministic model 

no inundation and inundation for approximately 37% and 29% of the 

inundation is preferred, the underprediction rate of observed inundation events 

varies significantly across the different observational products. When 

compared verification product, the model shows a large percentage of 

a way to embed some degree of conservatism into the 

with the reported inundation state for all observations pooled across 

model (see Table 2a) fall into the 0 – 50% range for the probabilistic predictions. Approximately 

40% of these underpredicted properties have non-trivial flood-risk (i.e., 40 of the 98 

underpredicted observations have a 10-50% chance of inundation). This demonstrates the need to 
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propagate uncertainty into inundation predictions, so as to better represent flood risk for 

properties that may be underestimated using a deterministic approach. Still, 58 observations 

(~13%) that reported inundation were predicted to have a low likelihood of inundation (0-10% 

chance), suggesting some downward bias in the probabilistic predictions. 
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While Tables 2 and 3 highlight the potential value of probabilistic predictions as compared to a 

deterministic approach, this value is quantified using the BSS. Figure 5 shows the BSS for all 

verification accounts and the breakdown of skill between verification product (survey reports and 

SOS, DUNE, and USGS flyovers) and shoreline type (open coast versus embayment). Almost all 

products show an increase of prediction skill in probabilistic over deterministic predictions (i.e., 

a positive BSS). The largest BSS score is associated with the USGS product for embayments, but 

this result is only based on one observation. For categories with more observations, positive BSS 

scores range from 0.06 to 0.39. Embayment properties associated with the DUNE flyover are the 

only exception where deterministic predictions outperform probabilistic predictions (negative 

this case, 

underpredictions and no overpredictions (Table 2c). Therefore, the incorporation of uncertainty 

is often not needed to explain discrepancies in the deterministic predictions. 

When considering the full set of observations, the BSS score is higher for observations in 

embayments versus those on the open coast. This result is almost entirely driven by the survey 

verification product, which also shows better probabilistic predictions (as compared 

deterministic baseline) for embayment properties versus those on open coastline. Conversely, for 

the DUNE flyover product, probabilistic predictions tend to provide a larger improvement over a 

deterministic baseline for open coastline properties. For the SOS flyover, the BSS scores do not 

different significantly between open coastline and embayments, and little can be said for the 

USGS flyover because the sample size of embayment properties is too small. 

The tendency for probabilistic predictions to more strongly outperform deterministic predictions 

BSS). In the deterministic predictions are very accurate; there are only 12 

to a 

in embayments for the survey, but not the flyovers, may reflect the processes captured by the 

different verification products. The flyovers provide still imagery taken on clear days with low 

wind activity to best capture images along the shoreline, and therefore do not likely capture 
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inundation associated with wave activity. Conversely, the written survey reports integrate 

respondents’ observations of flooding over a period of time prior to the survey date, and 

therefore can account for wave-related inundation. These wave-related flood events would be 

limited to 
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tembayments from wave activity. Therefore, a lower BSS along the open coastline compared to 

embayments for the survey reports, but not for the flyover products, suggests that the tool may be 

systematically underestimating wave-related flooding.  

the spatial distribution of model prediction skill, Figure 6a shows the difference 

between the predicted probability of inundation and the binary inundation observation (hereafter 

the Inundation Probability 

Lake Ontario shoreline. Highly accurate and precise predictions are associated with IPO scores 

near zero, whereas IPO scores greater than and less than zero are indicative of probabilistic 

overpredictions and underpredictions, respectively. Figures 5b-d show the spatial distribution of 

IPO scores within specific regions of the shoreline in more detail. The distribution of IPO scores 

are shown for the full verification dataset and for each verification product in Figure 6e. 

The probabilistic model is performing well along most of the shoreline, with IPO scores most 

often within a narrow range (-0.3, 0.3) around zero. While the median IPO score for most 

datasets (except the USGS) is approximately zero, the full dataset, survey, DUNE, and USGS 

products have IPO scores that tend to range below zero, indicating more underpredictions in 

these products. In contrast, most of the IPO scores for the SOS verification product are positive, 

indicating more overpredictions. 

Model predictions along the eastern shoreline, such as regions around North Pond (Figure 6b) 

Jefferson County, 

overpredictions (|IPO| > 0.9) do occur, they are more infrequent compared to other areas of the 

mostly the open coast, since barrier beaches often protect properties within 

To assess 

– Observation (IPO) score) for all observations mapped across the 

and tend to be the most accurate. While large underpredictions and 

shoreline. 

The largest concentration of underpredictions is located along the shoreline of Monroe County 

(Figure 6c) and are predominately from the survey verification product. Along the shoreline in 
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this region, houses are located within close proximity to the waterfront with relatively 

unprotected shorelines. Survey accounts for these properties also reported significant wave 

activity as a major contributor to inundation, suggesting that model underpredictions in this area 

are linked to poorly characterized wave runup processes. 
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In Sodus Point (Figure 6d), there is a clustering of overpredictions along the peninsula (IPO > 

0.9). All of the overpredictions in this region (n 

product. In Wayne County, there is only 1 underprediction (IPO < 

with the model doing a relatively accurate job of representing flood risk (- 0.9 < IPO < 0.9) for 

118 verification accounts 

procedure for these accounts is 75.91 meters, which is the all-time high daily water level on Lake 

Ontario. In addition, the nowcast identified a positive surge anomaly in this area on the SOS 

flyover date. However, the observed water level at a USGS gage near Sodus Bay was 75.85 

meters, suggesting the total water level used for verification was higher than that observed. This 

again illustrates that at high water levels, small discrepancies in measured data can result in 

significant uncertainty in predicted inundation. 

Demonstration of Medium Range Inundation Forecasts 

Figure 7 shows a medium range forecast of inundation for June 14, 2019, issued approximately a 

month beforehand (May 16, 2019). These inundation predictions are associated with a mean 

static water level forecast of 75.87 meters. The map displays inundation risk as low-, moderate-, 

and high-risk, which corresponds to probabilistic inundation predictions of 1-5% (yellow), 5-

50% (orange), and 50-100% (red), respectively. The ranges for these categories were based on 

stakeholder feedback. 

Under the static water level forecast, key locations in Wayne County NY were at moderate to 

of inundation. 

observations on June 15, 2019 are shown in Table 4. At this lead time, the uncertainty in the 

= 7) are from the SOS flyover verification 

- 0.9) for the SOS product, 

(94%). The modelled static water level used in the verification 

high risk The probabilistic inundation predictions for the SOS flyover 

static water level forecast is a major driver of the uncertainty in inundation predictions. There is 

only one property being significantly underpredicted (inundation probability < 10%). The model 

is overpredicting inundation significantly (inundation probability > 90%) for seven properties. 
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The probabilistic model has a BS of 0.20, which indicates the probabilistic model fits the 

observed data relatively well, even when based on the month-ahead forecasted static water level. 

The BSS for these observations is 0.35, which further demonstrates the benefits of the 

probabilistic predictions over a deterministic approach for medium range forecasts. 
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Model Limitations and Future Research Needs 

The proposed model attempts to improve risk characterization over a deterministic approach by 

propagating known vertical errors into inundation predictions. However, some key uncertainties 

were not included in the model, particularly those related to structural uncertainties and biases in 

certain datasets and models. For instance, while our model accounts for an abstraction of wave 

runup processes via the Mase equation (Eq. 4), Melby et al. (2012) showed that these empirical 

models parameterized by deep-water 

application to shallow water conditions with varied bathymetry.” Improved results could be 

possible using different 

hydrodynamic models capable of capturing wave transformation into shallow water regions, but 

these approaches were 

responsible for some regions of key underpredictions (e.g. Monroe County) and should be taken 

as a caution against using this model for precise inundation predictions in key areas susceptible 

to coastal processes that are difficult to characterize. Future work is needed to identify which 

components of the model lead 

alternatives can be found. The model does not account for the duration of wind speeds on storm 

surge heights, nor the correlation of storm surge and waves. To more accurate capture flood risk, 

future work should determine how flood risk varies with the persistence and co-occurrence of 

extreme coastal events. Additionally, a variety of non-lake level processes (e.g. riverine flooding, 

ponding in nearshore areas, etc.) are excluded from the tool and are therefore not included in 

potential inundation impacts. Stakeholder communication is critical 

understand how this tool can (and cannot) be used to forecast their flood risk.  

DISCUSSION 

wave conditions “will yield significant uncertainty in 

empirical approaches (Stockdon or EuroTop formula), or using 

not considered. The abstractions of wave runup used here may be 

to systematic biases and whether computationally efficient 

to ensure communities 

In an effort to present a robust verification of the model, multiple observational products were 

used to assess model predictions. However, these observational products all have measurement 
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error, which should be considered when interpreting the results. For instance, while the flyover 

products are associated with precise dates, the survey information has more uncertainty in the 

date of the actual inundation event being reported. Survey responses could have been submitted 

at any time following an inundation event, and not all survey responses reported the date of 
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tflooding. There is also the possibility of human error in the survey product, as homeowners may 

have reported inundation for a different part of their property (e.g. utility shed, detached garage, 

etc.) when asked about foundation inundation for their primary residential structure. Further, 

while flyover images were carefully screened to ensure observations of inundation (or lack 

were accurate, 

categorized. 

When used in forecast mode, medium-range forecasts of static lake levels contribute a large 

portion of the uncertainty to inundation predictions. Any potential to improve the accuracy and 

precision of these forecasts could have significant value to coastal communities. Recent work has 

sought to improve water level forecasts in the Great Lakes region (Durnford et al., 2018). This 

effort requires that data and models be seamlessly integrated across the international border of 

the US and Canada (Gronewold et al., 2018), as demonstrated in the expansion of the National 

Water Model across the Great Lakes region (Mason et al., 2019). Forecasting efforts could also 

benefit from the assimilation of state-of-the-art measurements of antecedent conditions (e.g. 

snowpack (Arslan et al., 2019), soil moisture (Entekhabi et al., 2010)), as well as additional 

runoff model intercomparisons (Gaborit et al., 2017) and improvements in models of open-water 

evapotranspiration (Charusombat 

further improve with increased skill in precipitation and temperature forecasts at subseasonal to 

seasonal lead times (Vitart et al., 2017); recent efforts in the Great Lakes region have focused on 

developing a suite of seasonal forecast tools for this purpose (Bolinger et al., 2017). One of the 

strongest signals is related to the El Niño-Southern Oscillation (ENSO), which provides forecast 

information at the end of the fall 

coincides with the timing needed to prepare for and potentially reduce flood risk. While ENSO 

thereof) there is the possibility that certain observations were incorrectly 

et al., 2018). Medium-range water level forecasts would 

season for winter and early spring water supplies. This 

forecasts can be noisy over the Great Lakes, recent work suggests that non-linearity in the 

underlying teleconnections could be used to improve forecast skill (Carter et al., 2018; Fu et al., 

2019). 
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Implications for Lake Level Management 

Municipal-level decision-making for flood risk mitigation on Lake Ontario is complicated by 

water level management that influences flooding on the lake. Since the late 1950’s, water levels 
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t on Lake Ontario have been regulated by the International Joint Commission (IJC) at the Moses-

Saunders Power Dam, located downstream of Lake Ontario on the St. Lawrence River. The dam 

has been used to stabilize water levels on the lake for a variety of stakeholder interests, including 

water use, 

water level stabilization caused significant 

ecosystems (Wang et al., 2015; Wilcox et al., 2018), leading the IJC to introduce a new water 

level management plan (Plan 2014) on January 1, 2017 that reintroduced some of the natural 

variability in water levels that had been reduced under the previous plan (IJC, 2014). A few 

months after Plan 2014 was implemented, Lake Ontario experienced the 2017 flood, and then the 

2019 flood occurred two years later. These floods have caused significant public backlash 

against Plan 2014, threatening the environmental benefits promised under the plan. This has 

sparked a review of Plan 2014 and considerations of whether an alternative management regime 

could improve the tradeoff between riparian flood risk and environmental restoration. 

To effectively quantify risk and expected benefits to multiple stakeholder interests, any candidate 

management plan needs to be assessed under an ensemble of plausible water supply scenarios.  

The proposed inundation prediction tool lends itself to aid in quantifying flood damages under a 

large ensemble of 

uncertainty propagation would lead to a conservative estimate of riparian flood risk, which 

would help address stakeholder concerns in the tense political environment. This is particularly 

important given the non-linear damage curve (see Figure 1), where small changes in peak water 

levels can lead to large changes in potential impacts. Therefore, the probabilistic inundation tool 

is well suited to assist in flood impact quantification in future lake level management studies 

(both on Lake Ontario and the upper Great Lakes). 

domestic navigation, hydropower, riparian protection, and recreational boating. 

However, stress to coastal wetlands and other 

water supply scenarios due to its low computational cost. In addition, 

However, more work is needed to support 

this effort, e.g., regional extreme value models of storm surge and offshore wave heights 

anywhere along the shoreline. This effort is left for future work. 
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CONCLUSION 

This study contributes a novel, probabilistic, and parcel-level inundation prediction and mapping 

tool that combines multiple flood-related processes (static water levels, storm surge, wave run-

up) relevant to large lake systems while also accounting for and propagating uncertainty in each 
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s
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t through to inundation predictions. The model acts as a computational efficient complement to 

other inundation prediction tools in the Great Lakes that is well adapted for repeated and 

conservative inundation prediction, as is needed for frequently issued flood forecasts during 

extreme high water events or in planning studies with large ensembles of water supply scenarios. 

The tool was validated in a case study along the New York Lake Ontario shoreline with accounts 

of inundation from four separate observational products covering the record floods of 2017 and 

2019. Validation efforts showed that the probabilistic tool provided more accurate inundation 

predictions than deterministic predictions. The probabilistic tool had 

underpredictions, which were attributed to deficiencies in capturing wave runup and overtopping 

shoreline protection 

probabilistic nature of the tool allowed for conservative inundation estimates that helps to avoid 

major underestimation of inundation risk. 

The fully validated model will be made available to stakeholders as an online forecasting tool 

with the goal of supporting proactive risk management and accelerating community response to 

potential inundation. This tool joins a larger suite of models emerging to help communities 

mitigate heightened flood risk along the Great Lakes shoreline. 

Additional supporting information may be found online under the Supporting Information tab for 

this article: a comparison of modelled and spatially-interpolated, observation storm surge data,  

an assessment of modelled wave height data, and sample images used for model validation. 

areas of concentrated 

of structures (e.g. vertical walls). However, in most locations the 
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Figure 1. The distribution of home elevations along the Lake Ontario shoreline (see Data). 

Under a high water level scenario (75.9 m, the average peak level between the floods of 2017 

and 2019), 15% of homes on the Lake Ontario shoreline fall below that water level and are 

projected to be inundated. However, after propagating vertical errors in the mean water level and 

FIGURE LEGENDS 

home elevations (see Methods), up to 43% of homes are at risk to be impacted. 

Figure 2. Flowchart of probabilistic inundation predictions. 

Figure 3. Map of study region and data sources. 
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Figure 4. Mixture distribution for storm surge at a particular location and for a particular wind 

event (e.g., 10 - 20 mph winds from the northeast). In this example, there are n = 9 hourly 

occurrences associated with this wind event, each with a different nowcast surge value. The 

distribution of true surge around any particular nowcast surge value is shown with dotted blue 
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tlines. The final mixture distribution of storm surge is shown in yellow. 

Figure 5. The BSS for each combination of verification product and shoreline type. The BSS of 

all verification properties (orange line), open coastline properties (red line), and embayment 

properties (blue line) is displayed as the reference BSS for all product and shoreline 

combinations (shown numerically). 

Figure 6. IPO scores mapped along the Lake Ontario shoreline (a). Negative values correspond 

to model underpredictions, while positive values correspond to model overpredictions. IPO 

scores are shown for Sandy Creek, Oswego County (b), Greece, Monroe County (c), and Sodus 

Point, Wayne County (d). The boxplot of IPO scores broken down by verification product is 

shown in (e). 

Figure 7. The Google Earth Engine user interface of the online inundation prediction tool. 

Inundation predictions are shown for the June 2019 forecasted water level in Wayne County, 

New York. 
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Source County Coverage RMSE (m) 

FEMA 1-meter DEM Orleans, Wayne, Cayuga, Oswego, Jefferson 0.127 

Monroe County 1-foot DEM Monroe 0.106 

NOAA 3-meter DEM Niagara 0.2 

DUNE Reported 

(n = 89) No Yes 

P
re
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te
d

N
o 53 (60%) 12 (13%) 

Y
es 0 (0%) 24 (27%) 
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1047 
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t 1048 

1049 

1050 TABLE CAPTIONS 

1051 Table 1. The reported RMSE for each DEM covering the Lake Ontario shoreline. 

Full Data Reported 

(n = 458) No Yes 

P
re

d
ic

te
d N
o 

171 

(37%) 
98 (21%) 

Y
es 57 (13%) 

132 

(29%) 

b) 
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1052 Table 2. Contingency tables for deterministic inundation predictions versus reported inundation 

1053 accounts, shown by verification product (percentages of total sample size shown in parentheses). 

a) Survey Reported 

(n = 226) No Yes 

P
re

d
ic

te
d N
o 55 (24%) 76 (34%) 

Y
es 20 (9%) 75 (33%) 

c) d) SOS Reported 

(n = 126) No Yes 

P
re

d
ic

te
d

N
o 63 (50%) 4 (3%) 

Y
es 37 (29%) 22 (18%) 
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USGS Reported 

(n = 17) No Yes 
P

re
d

ic
te

d

N
o 0 (0%) 6 (35%) 

Y
es 0 (0%) 11 (65%) 

Probability of Reported 

Inundation (%) No Yes 

0 - 10 
131 

(29%) 
60 (13%) 

10 - 20 12 (3%) 14 (3%) 

20 - 30 10 (2%) 9 (2%) 

30 - 40 9 (2%) 9 (2%) 

40 - 50 9 (2%) 6 (1%) 

50 - 60 10 (2%) 14 (3%) 

60 - 70 8 (2%) 17 (4%) 

70 - 80 7 (1%) 6 (1%) 

80 - 90 12 (3%) 19 (4%) 

90 - 100 20 (4%) 76 (17%) 

e) 
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t 
1054 Table 3. Probabilistic inundation predictions for data from all verification products (n = 458). 

A
u

th
o

r 

1055 

1056 

1057 

1058 

1059 

1060 

This article is protected by copyright. All rights reserved 



        

p
t 

Probability of Reported 

riInundation (%) No Yes 

c0 - 10 41 (32%) 1 (1%) 

s10 - 20 7 (6%) 0 (0%) 

20 - 30 8 (6%) 0 (0%)

u30 - 40 5 (4%) 3 (2%) 

n40 - 50 8 (6%) 3 (2%) 

a50 - 60 7 (6%) 3 (2%) 

60 - 70 6 (5%) 1 (1%) 

M

70 - 80 8 (6%) 2 (2%) 

80 - 90 3 (2%) 2 (2%) 

90 - 100 7 (6%) 11 (9%) 

1061 

1062 

1063 Table 4. Probabilistic inundation predictions based on the month-ahead water level forecast for 

1064 the SOS flyover verification product (n = 126). 
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